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TECHNICAL NOTE 4245

FLUTTER ANATYSTIS OF RECTANGULAR WINGS OF VERY
IOW ASPECT RATIO

By Robert W. Fralich and John M. Hedgepeth
SUMMARY

A flutter analysls, employing slender-body serodynamic theory and
thin-plate theory, is made for rectangular wings of very low aspect ratio
with a constant thickness. The spanwise variation of wing deflectlion is
essumed. to be given by a parsbola, and the chordwise variation is allowed
complete freedom. The results show the varisetion of flubtter speed and
mode shape with aspect ratio. Comparisons are made with additional
results obtained by approximating the chordwise deflection shape by use
of parabolic or cublic curves. The analysis shows that the cublc epproxi-
mation gives good results for a ratio of chord to semispan less than 3.

INTRODUCTION

Flutter anslyses of wing and tail surfaces of very low-aspect ratio
are camplicated by the presence of large smounts of chordwise curvature
in the flutter mode. 1Indeed, the questlon of what chord-bending degrees
of freedom are necessary in order to obtain good results is largely unan-
swered. at present.

Several studies are available that deal with the effects of chord-
wise variation of deformations on flutter. (For example, see refs. 1
to 7.) In these references various configurations of very low aspect
ratio were analyzed. In reference 1, complete generality of chordwise
deflection shape was allowed and the spanwise variation of deflection
was sssumed to be linear. This reference does not shed light on the
chordwise shape of flutter modes, however, because no flutter condition
wvag found. In references 2 to 7 limited account is taken of the chordwise
deflections either by the superposition of several modes, by using polyno-
mial expressions, or by the utilization of a number of discrete statioms.

The present paper is concerned with an analysis of the flutiter behav-
ior of the simple rectangular cantilever plate of very low aspect ratio.
(See fig. 1.) By making use of slender-body aerodynamic theory and by
assuming a parabolic spanwise deflection shape, the analysis of this
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configuration can be made without restricting the chordwise shape of the
flutter mode. Since flutter is obtained in this case, the complexity

of the chordwise deflection shape at flubtter can be investigated. Results
aere obtained in the form of flutter boundaries, and the chordwise mode
shapes for two representative cases are illustrated. In addition, the
errors caused in the flutter boundaries by approximating the chordwise
deflection shape by use of parsbolic or cublc curves are investigated.

SYMBOLS

Cl’cé’CB’Ch constants of integration —
c chord

D plate stiffness in bending, Et3/12(1 - w3

dgsdy,dp,dz constants used in equation (29)

E Young's modulus of elasticity

F(x,T),F(t,T) chordwise deflection shape

(&) amplitude of chordwise deflection shape
pmﬁsh
K flutter-frequency parameter, o 5

my ,Mp,Mmz,m), roots of characteristic equation (18)

P1(x,7) generalized distributed loading (see eq. (13a))
P(x,y,T) distributed loading per unit ares, positive in z-direction
p(x,y,T) lift per unit area, positive in z-direction
Ul
] dynamlc pressure, p —
s semispan

t thickness

L1
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U

Vl(T)
V(y,T)
w(x,y,T)
X¥,2

a,B,r

T
B(x,5,2,7)
w
Subscripts:
I

R

free-stream veloclty

generalized serodynamic leading-edge shear (see eq. (13b))

leading-edge shear, positive in z-direction
deflection, positive in z-direction
coordinate system (see fig. 1)

parameters defined by equations (21)

mass-ratio parameter, X es_
2p t
m
5x qs5
dynsmic-pressure paxameter, Eg-—ﬁ—

Poisson's ratio

nondimensionsl coordinate, x/s
total potential energy of system
free-stream density of £luid

density of msterial

time
perturbation velocity potential

fliutter frequency

imaginary

real



N NACA TN L4245
ANATYSIS -

The flutter analysis contained herein 1s performed in a manner
similar to that used in the analysis of static aeroelastic divergence
in reference 8. The configuration treated, a constant-thickness rectan-
gular plate of very low aspect ratioc, is cantilevered from a rigld wall
and is located in s fluld flow with s free-stream velocity U. (See
fig. 1.)

On the basis of the low-aspect-ratio nature of the configuration,
the following two assumptions are made: First, since the deflection
shape would vary in a more complicated mamner in the chordwise direction
than in the spanwise direction, a simple spanwise varistion is assumed
and the chordwise varlation is allowed to be arbitrary. Thus,

W(XJY)T) = yeF(x,T) (l)

The second assumption 1s that slender-body serodynemic theory msay be

used to find the resulting aerodynamic loads when the plate deforms in
the shape given by equation (1). In this theory, terms in the linearized
velocity-potential equation that contaln streamwise and time derivatives
are neglected in camparison with terms containing crossflow derivatives.
This theory is an extension of Jones' steady-aerodynamic theory (ref. 9)

to unsteady serodynamics ss suggested 1n references 10, 11, and 2.% ywith
these assumptions the flutter problem is simplified to the extent that
an exact solution is possible.

Aerodynemic Forces

In slender-body sgefodynamic theory, the velocity-potentisl equation
for linearized flow reduces to Laplece's egquation in the crossflow plane:

2 2 :
¢ 3¢ _ (2)

2 t 55T

87t should be noted that references 2, 9, 10, and 11 consider only
"pointed" wings. TFor s rectangular wing it is necessary to treat explic-
itly the logical consequences of a nonpointed leading edge. The expres-
sions for loading derived herein, therefore, differ in detail from, for
example, those given in reference 10.



NACA TN h2hs5 5

where ¢ is the perturbation velocity potential. The assumptions needed
in deriving this equation are discussed in reference 11. The boundary
conditions on the upper side of the xy-plene are given as follows:

For x <O,
¢(nyJ+O}T) =0 (53-)
for 0Sx S,
¢(X;Y:+0;T) =0 (lyl 2> S)
8 (3b)
a¢(x +O'r)—y2UaF+aF <
Sz y ¥ aHY, = =5 (IYI = S)
and for x > c,
¢(X:Y;+O:T) = ¢(C;Y:+O;T) (3c)

In addition, derivatives of the potential at infinity must be zero.

The method used in reference 8 is employed herein to calculate the
velocity potential @(x,y,+0,T) on the top surface of the plate. Thus,

forom - EL B ARFTE

2

The 1ift per unit area in terms of veloecity potentilal is

p(x,y,T) = gpura¢(x:3’:+0:1') L2 a¢(x,y,+0,'r)—|
> s S 5 S

which, upon substitution from equation (lt-), becomes

p(x,y,T) . q(aeF + 2 3%F + L 52F>(£+ yg) 82 _ 42 (5)

3 \ax® UOxOT 2 37r2/\2
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As a result of applylng slender-body aerodynamic theory to a rec-
tangular plan form, the velocity potential jumps from a value of zero
eheaed of the leading edge to some finite value at the leading edge.
Therefore, a concentrated serodynsmic load acts along the leading edge
and has a magnitude given by

V(Y; T) = 2pU¢(O,y,'+O, T)

which, upon substitutlon from equation (h), is glven by the following
equation:

V(y,T) =-§— q[aFéi’T) + % aFéS’T)-J <§ * y2> o - ¥ (©)

Structural Equilibrium

The principle of minimum potential energy 1s used to derive the
differential equation of structural equilibrium for the function F(x,T)
in a manner analogous to that used in reference 8 for the corresponding
divergence problem. Accordingly, the total potential energy, consisting
of the strain energy of the plate plus the potential energy of the
external forces, is given by the equation

C =) .
1 =§fo L [w,m2+ww2+ By + 2(1 - u)w,we]dxdy -

focfos Pv dx dy - fos w(0,y,T)dy "

where the subscripts x and y denote differentistion with respect to
x and Yy, P is the total distributed loading given by

P=p—pmt.%'_2-l'2’- (8)

and V is the shear at the leading edge. (See eq. (6).) Substituting
equation (1) into equation (7) and integrating yield ) _

|.! .
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2
c 2
I= g[ £<§—E> + LeF2 + b p.sBF(ﬁ) +
0 5 \ox2 3 dx2

o c
Sa- u)s5<g—£> ax - fo Py (x,7)F ax - Vy(T)F(0,7) (9)
where
<]
Py (x,7) = f P(x,¥,7)yy (208)
0
<]
Vi(T) = f V(y,7)y%dy (10b)
0

It should be noted that the integrated loadings P; and V; are tempo-

rarily considered to be unrelated to the deflection F <for the purposes
of performing the variation.

Use of the calculus of variations to minimize the expression for
potential energy ylelds the differential equation

g alPF 4(3;1 2) 3 °F | La =P1(x,'r) (11)
5 axt o2 D
and the boundary conditions
5 32
%§+_p8ﬁ=o (x = 0,c)
5_5&_2(4_5u)532_5'_m=o (x=0) p (12)
5 Bx; 3 X D
82 F 2 3 OF _ -
5—8—;{—5——-3—()'['-5”.)5 B—X—O (X_C)J
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Aeroelsstic Solution

The partial differential equation and its boundary conditions which
describe the deflection of the plate due to the generalized losds Pl(_x,'r)

and Vi(t) are given by equations (11) and (12). The generalized loads

are expressed in terms of the deflections by substituting the expressions
for serodynamic loads (egs. (5) and (6)) and the inertia loads (included
in eq. (8)) into equations (10). Thus,

o1 oo 6[%E L2 % 13 52 3%F
Pl(x,T) = 15 qs <ax2 + T ax p + U——2- S;E - pm't 5 -aTQ- (138.)
__ % 6 aFgo,T'j 1 JF(0,T)
Vy(r) ==z @ [ x U or (150)

If these vealues of Pl(x,'r) and Vl(-r) are substltuted into the

differential equation (11) and into the boundary equations (12), if the
resulting equations are made nondimensional by letting

ure
1l
2] ]

and if the time dependence is taken to be

F(g,7) = £()ede”

the differentiasl equation becomes

£IV(E) + BN - ag)£" () + biK V'?._Eé f'(§7_ + |20 - K2(l + %) £(¢) =0 (k)
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and the boundary conditions are

£'(e) + axf(g) =0

£r(e) + 1;(7\- a.5)f'(§) + 2iK @f(g) =0

£ (g) - kesf'(E) =0

where

and

8z

(15)

(16a)

(16D)

(16c)

It should be noted thst real values of o (or K) infer simple harmonic

motion and should yield the flutter boundary.
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The general solution of the differential equation (l’-!-) can be
written )

im. ¢ im & im. ¢ imy g
£(¢) = Cqe 1 + Cpe 2 + Cze E + Cpe b (17)

where my,Mp,Mz,m), , are the roots of the characteristic equation

m¥ - 4(7\ - al) - bk \/5“:_7‘ [20 K2 (1 + ig):[ =0 (18)

Substitution of equation (17) into equations (15) yields
5 7

im.c i im
1 /s + <a2 - m22>02elm2c/s + (8.2 - m32)03e 3C:/B +

imlt_c/S

<8.2 - mlz)Cle

<a2 - m)_l_2)C)+e =0

1[21{ vﬁ + llml(% - a3) - ml}:lcl + i[ Vél-e_@- + T (19)
b - o5 - meﬂc2 + 1[21{ + )-Hn3(7\ - a5) - m33:]C5 *
i[?K@+hmh<7\-a3) —mh%}CLF:O |

im. c/

- me(“ai * mee)ceeimgc/ i

--iml<ll-a5 + mq )Cle

imhc/s _

im
im3<lra5 + m52>03e 30/ °_ m4(4a5 + mh_a)cl,_e
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The condition for a nontrivial solution is obtained by setting the
determinant of the coefficients equal to zero. When this determinant
is expanded and simplified, the following equation 1s obtained:

(m - mg)( mz - m)+) Ao (A3)+ + 354)ei<m1m2) s + Az), (A12 + Bm)ei(m5+ml*) %] +

< [¢]
(=2 - m5)(m4 - mp) Ayz(Byp + Bug)ei(mlﬂ5)§ i(m2+m4)§
L

+ AQ)_L(A31 + B3l)e

i(ml+m4) 1(m2+m3) g

»le

(ml - mu) (m2 - m3) AllL(AEB + 323)e + A32 (A)-l-l + Bll-l)e

- -

2

Apg = Agp = -lapaz - ag(mp + mpng + mqa) - hasmgng + mping®

Bpq = Bgp = Mhap + X ?l_‘;‘h(mp+mq)+47\mpmq

Equation (20) is expressed in terms of the roots of the characteristic
equation (18) which depend on the values of A, K, and e. Expressing
this dependence explicitly is impossible; therefore, the following pro-
cedure is used to find a parametric relationship: Examination of the
characteristic equation shows that the roots must have the form

7

mp =y - iB
(21)

ID.3 ==-7 + i

my =-y - ia ]
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where 7y 1s a positive real quantity snd

_\/72-2(7\-&1)+§@ (222)

@ =
B = Vye - 2(h - o) - T |/2R | (22p)
in which
_I_;_= h'[5'<72'?‘+8‘l)2] (23)

72(1 N 25) _ 5eA
12 12

Here, only real values of K/y are considered end o and B can be
either real or pure imaginary quantities. Equations (21), (22), and (23)
show that the chsracteristic roots can be expressed explicitly in terms
of N, ¥, and e eand that X can be found from equation (23). When
o« and B, given by equations (22), are both real, the flutter equa-
tion (20), upon substitution from equation (21), becomes

F
64@3[(D1 cos 228 4 Ey cosh %€ cosh BS 4 L ginh %€ ginn P—CL) +
8 =] 8 af g 8

B " Fa
i(D2 sin 22 4+ 2 sinh %€ cosh BS 4+ —2 cosh £ sinh _B_c_>:] =0 (24s)
8 s 8 8. B B B

where

Dy = -(2A1A2 + ABo + A2Bl)
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Ey = (A5 + NBs) [2A3 - (32 + o+ BE)A)_I_] +
(Ay - ) (20&232% - ( by® & of + 52)A5]

Fy = (A5 + A\B) [2092532% - (2 + a® 4 132)A3] +
oPp2(y, - N) [2A3 - (52 + a? + BE)A,;]

Do = -(A3Bp - AgB))

E2=7 (A3+-AB5)';\<872+8&1-87\+K_2'?__2')‘2(72-?\)I;c %22\:} _

7\(872+8al- %2_21_2_) +2(s2 - ) %V'%_TJ

o (AL;. - 7\)

Fp = -7 (A3+7\Bj)[7\(872+8al—87\+I:2—25E€)+2(72-7\) %@:’_

-l oo £3) - 2 5B }

in which

15
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>
n
I

2
R L A GREET o)

2
+
< IR

Bl=-2-9(l-u)7\+<72-7\)<

By = %g (L - p)A + (72 - %)(2% - % %%h)

J100 (3 . uy(1-2n) - 2 (1 - 10 (3 2 _ K25
Ay =32 (1-w(-2u) - F @ -wn e - eZ e W2 T
Au=-139(l-u)-+72

Bz = %? w- 72

and the expressions for a, B, and K/y are given by equations (22)
and (23). If « is real and B is imeginary in equations (22), the
flutter equation (20) has the form : - -

Bic F Bic
i6hd51[KDl cos 2re + B cosh X cos N + 2L sinn & sin —};) +
8 8 8 afy 5 8
E c Fr c
i(Dg sin 82C 4+ —2 sinh %€ cos El'—»+ -2 cosh £ gin E!;) =0 (24p)
8 o 8 8 By 8 8
where

Bl=V'72+2(7\—al)+§V?2E -
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I? both o« and B are imaginery, equation (20) becomes

c Byc F c B-.c
-6ka, By (Dl cos g%i + Eq cos az cos = = 2 = ) +

+ sin sin
8 “151 8 8
E c B.c F c Bac
. 2yc , 2 X1 1° . 2 b 1
1<ZD2 sin == + % sin —— cos —— + By cos —=— sin — o} (2ke)
where

ay = V[-yz + 2(% - al) - % vgéi

Equation (2hka), (2hb), or (24e) cen be solved by the following
trial-snd-errdr process:; First, values of A and € are assigned;
then, for varying values of 7, both the real and imaginary parts of
the proper form of equations (24) are solved for the corresponding velues
of c¢/s where they exist. Only for perticular values of y wlll these
two solutions yield identical wvalues of c/s. By f£inding these partic-
ular values of 7y, the appropriate velues of c/s essociated with the
assigned values of A and € are determined. Some results obtained
by this and subsequent procedures are presented and discussed in a later
section. '

Solution for Large Values of c¢/s

The results in the region where c/s 1s large show thet o is
real and B is imsginary. In this reglon, equation (24b), upon consid-
ergtion of the order of magnitude of its terms, reduces %o

F E F
P1c L E%S + i(—g cos P1c 2 Blp) =0 (25)

E, cos —— 4+ ——— sin = sin —} =
1 5 aBy * B1 -

This equation can be satisfied only when
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which, when expanded, becomes -

—-?2—,{%7 ¥ +al-?\)+I;-—2él-Z—- (A3+7\B3) +cz.;31 (A)+-7\)2 (27\_

K /5eA €N} 2 _
: %_)A5 + (27\ + 5 V%E_)a Ayl =0

Only the last factor of this equation yields a solubion:

(27\ > @)A§ + <2?\ +y V%_l) aPAy = O (26)

The value of c/s corresponding to the solution of equation (26) can
be found from equation (25) to be

c_ 1 .1 %5
5 =B tan ¥, (27)

Equstions (26) and (27) are used to find the veriation of N with
c/s for various values of e in the region where c/s 1is large. That
is, values of N and € are assigned and ¥ is varied until the two
values of 7 (there are either two or none of them) are found thet sat-
isfy equation (26). Then, the corresponding values of c/s are given by
equation (27). B

Mode Shapes

£(e) ot
£(0)
phase and out of phase with the maximum leading-edge deflection are given

- [f(g)"

£(0)
“R

The components of normelized mode shape which are in

£() -
lETES}I, which are tﬁe real and imsginary parts, respec-

tively, of the function
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imE  dmpt o dmgt  img
£(0) Cy + Cp + Cxz + Cy -

Here, the constants Co, 03, and Cj are found from the boundary equa-
tions (19) in terms of C, to be, respectively,

Co = %[(mj - ml;) (32 - ml2)A3’-l—e-i (mlm?)% * (mlp - ml)(aE -

T

+ (ml - ml;) (aa -

Cs =%‘ (my - mz)( )Aaue )

m22)A11|_e-i<m2m3)§ + (m2 - mj_)(ag - mhe)Alze_i(mym]*) %}

e

-1i m]_"ﬂll.)

=< (m2 - m3) (5'2 - mlz_)A25e ( + <m3 - ml) (a,g -

B
V)
NP
>
&
o
1
e
N
5]
S
|6

+ '(ml - m2) (5.2 - m32)A12e-i(m3-Hm'l-) %J

where

_i(ml+m5)§ . ( -1(ml+mh_)-:-

A= (ma - ml;.) (8'2 - m52)A21l_e mz - m2) (a.2 g mh‘?')A23e

(= - ms5) (az - ) ma)hsue Hrvme)s
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Approximate Solutions

In practical wing construction, an exact solution, such as thet cobtained in the previous
gectlons, would not be feasible and some gort of approximation of the chordwise deflection shape
would be necessary. One method of approximation is to represent the chordwise variation of
deflection by the first few terms of a power series. The present configuration (fig. 1) is used
to test the accuracy of such an approximation. '

In this spproximate analysis, the assumed chordwlse deflection shape

F(x,7) = [do + d1(%) + d2(§)2 + d3(§)5 + .. .:Iei“"r (29)

ig substituted Into equation (9), the equation for potentlal energy. Minimization of the poten-
tial energy with 'rnﬂ'nn{“l' to da, dn. d= and then gubgtitution of the arpnropriate

expressions for Py(x,7) and Vl('r) from equations (13) yleld a set of hamogeneous gimultaneous
equations. The solution ¢of these nmln‘i"ln'nn is chhtainad 'hv nn++‘inc the determinant of the coef-

SRR N e Akt s W wieked Rkt A e et

ficlents equal to zero. Cubie approximation of the chordwise varia.tion of deflection results in
't.he follcwzl.ng complex equation.

b+ 48K 5' %b+lm-a+1hxg—- %h+(8?\+-239|1)%+11|x5£1 %'b*-(mi'lm)&*i“@
1y b+ 3801 )guzc‘!ﬁ 1n+[~m+1§(a-m)l+13x5"‘ bo+ m+%a-u)!+m@
2 é '5'( e 12 1y e kel i G €

=0 (30)

%bq-:?-pg- Eb+?(h-3i)§+1§l@ %hi[%i\-rl’-g-(b-)u)]%-i-hsi-m@ %b+[&+?{)-ﬂl§l5+6%+i¥x@

'b*-ll]l-l% %-bq--?l(a—u)g-!-ﬂg;l %b+|}l}.+${5-2‘i‘%+6‘3+1§!@ }(b+[—2§'—1+3(5-ﬂ*)]-:-+12:';'+m{§—

H oEe

Gheh NL vOVN
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By a trisl-snd-error solubtion, the flutter-frequency parameter K is
eliminsted and the variation of A with c¢/s 1s found for a gilven value
of €. The equation for parabolic deformetion, obtained from equation (30)
by deleting the last row and last column, 1s solved anelytically for A in
terms of c/s and e.

RESULTS AND DISCUSSION

Results of the flutter analysis, in which chordwise variation of
deflection is allowed complete freedom, are given by the flutter boundaries
in figure 2. For convenlence, these boundaries are denoted herein as
"exmct." The variation of dynamic-pressure psrsmeter A with c/s is
given for two values of mass-ratio parameter e. Here, and in the other
results presented in this section, Poisson'’s ratio is taken equal to 1/3.
Comparison with the static serocelsstic-divergence boundary, obtained from
reference 8, shows that divergence is less critical than flutter.

Each flutter boundary, for large values of c/s, consists of a series
of scallops approaching & limiting value of A. The variation of this
limiting value of A with € 1s given in figure 3. The flutter speed is
less than the divergence speed and seems to approach it asymptotically for
high values of €.

Mode shapes, showing the chordwise variation of defiection at flutter,
are obtalned from the analysis and are shown in figure 4 for two values of
c/s which correspond to the positions indicated by the tick marks on the
curve for € = 0.01L 1in flgure 2. Increasing c/s (decreasing the aspect
ratio) adds more waves to the mode shape.

Flutter boundasries, obtained from parebolic and cublc approximstions
of the chordwise deflectlon shape, are compered with the exaect flutter
boundary in figure 5. Both approximstions yield good results for velues
of c/s less than 3, with the cublc curve ylelding almost exaect results.
However, for higher values of c/s both gpproximations yield poor results.
Apparently, in order to analyze the flutter behavior of wings in this
region, higher order terms in the chordwise deflection shape must be used.

CONCLUDING REMARKS

The present flutter analysis of rectangular plates of very low aspect
ratio indicates that the flutter-mode shape has an increasing number of
waves in the chordwise directlon as the aspect ratlo 1s decreased. Approxi-
mation of the chordwise deflection shape by use of parabolic or cubic curves
yields flutter speeds in falr agreement with those of the "exact" theory
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for a ratio of chord to semispan less than 3 with the cubic approximetion
giving almost exact results. For lower aspect ratlos, higher order
approximations must be used.

Langley Aeronautical ILsborstory,
National Advisory Committee for Aeronsutics,
lLangley Field, Va., Februery 17, 1958.
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Figure 1.- Cantilever plate of very low aspect ratio.
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Figure 3.- Limiting value of critical dynsmic-pressure parameter for

flutter. p = %
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Figure L.- Chordwise variation of deflection at flutter.
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Figure 5.- Comparison of exact and approximete flutter boundaries.
= %—; € = 0.01.
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